Using Deep Q-Learning to Control Optimization Hyperparameters
نویسنده
چکیده
We present a novel definition of the reinforcement learning state, actions and reward function that allows a deep Q-network (DQN) to learn to control an optimization hyperparameter. Using Q-learning with experience replay, we train two DQNs to accept a state representation of an objective function as input and output the expected discounted return of rewards, or q-values, connected to the actions of either adjusting the learning rate or leaving it unchanged. The two DQNs learn a policy similar to a line search, but differ in the number of allowed actions. The trained DQNs in combination with a gradient-based update routine form the basis of the Q-gradient descent algorithms. To demonstrate the viability of this framework, we show that the DQN’s q-values associated with optimal action converge and that the Q-gradient descent algorithms outperform gradient descent with an Armijo or nonmonotone line search. Unlike traditional optimization methods, Q-gradient descent can incorporate any objective statistic and by varying the actions we gain insight into the type of learning rate adjustment strategies that are successful for neural network optimization.
منابع مشابه
Efficient Hyperparameter Optimization for Deep Learning Algorithms Using Deterministic RBF Surrogates
Automatically searching for optimal hyperparameter configurations is of crucial importance for applying deep learning algorithms in practice. Recently, Bayesian optimization has been proposed for optimizing hyperparameters of various machine learning algorithms. Those methods adopt probabilistic surrogate models like Gaussian processes to approximate and minimize the validation error function o...
متن کاملBayesian Optimization with Robust Bayesian Neural Networks
Bayesian optimization is a prominent method for optimizing expensive-to-evaluate black-box functions that is widely applied to tuning the hyperparameters of machine learning algorithms. Despite its successes, the prototypical Bayesian optimization approach – using Gaussian process models – does not scale well to either many hyperparameters or many function evaluations. Attacking this lack of sc...
متن کاملHyperparameters Optimization in Deep Convolutional Neural Network / Bayesian Approach with Gaussian Process Prior
Convolutional Neural Network is known as ConvNet have been extensively used in many complex machine learning tasks. However, hyperparameters optimization is one of a crucial step in developing ConvNet architectures, since the accuracy and performance are totally reliant on the hyperparameters. This multilayered architecture parameterized by a set of hyperparameters such as the number of convolu...
متن کاملCritical Hyper-Parameters: No Random, No Cry
The selection of hyper-parameters is critical in Deep Learning. Because of the long training time of complex models and the availability of compute resources in the cloud, “one-shot” optimization schemes – where the sets of hyper-parameters are selected in advance (e.g. on a grid or in a random manner) and the training is executed in parallel – are commonly used. [1] show that grid search is su...
متن کاملExperiments With Scalable Gradient-based Hyperparameter Optimization for Deep Neural Networks
Gradient-based hyperparameter optimization algorithms have the potential to scale to numbers of individual hyperparameters proportional to the number of elementary parameters, unlike other current approaches. Some candidate completions of DrMAD, one such algorithm that updates the hyperparameters after fully training the parameters of the model, are explored, with experiments tuning per-paramet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.04062 شماره
صفحات -
تاریخ انتشار 2016